

Department of Mechanical Engineering Computational Fluid Dynamics (MECHT0505)

Report of Assignment 1

A Lid-Driven Cavity Flow at Re=100 Using Open Source Software

$\mathbf{B}\mathbf{y}$

Name	Student ID
Name Surname	1234567890
Name Surname	1234567890
Name Surname	1234567890

Course given by

Asst. Prof. Levent Aydinbakar soscfd.com

1 Introduction

Briefly introduce the problem of lid-driven cavity flow and mention the objective of analyzing it at Re=100 to observe two small vortices around the bottom corners.

2 Methodology

Describe the computational approach used to solve the problem, including mesh generation and boundary conditions.

Figure 1: Computational mesh for the cavity problem

Discuss the simulation parameters, including the Reynolds number adjustment to Re=100.

Figure 3: Pressure contours at Re = 100

Summarize the findings, emphasizing the observation of two small vortices around the bottom corners at Re=100.

3 Results

Present and discuss the results.

4 Contribution

Detail the contributions of each group member.

Team member	Contribution
Name Surname	Worked on mesh generation.
Name Surname	Conducted simulations.
Name Surname	Analyzed results.

Table 1: Contributions of group members