

Department of Mechanical Engineering Computational Fluid Dynamics (MECHT0505)

Report of Assignment 2

Flow over a 2D Car Model Using Open Source Software

$\mathbf{B}\mathbf{y}$

Name	Student ID
Name Surname	1234567890
Name Surname	1234567890
Name Surname	1234567890

Course given by

Asst. Prof. Levent Aydinbakar soscfd.com

1 Introduction

Briefly introduce the importance of CFD for automotive industry. Explain what snappyHexMesh is. Explain why do we make a mesh refinement study in CFD.

Figure comes here

Figure 1: The computational domain of the 2D car problem

2 Methodology

Describe the computational approach used to solve the problem, including mesh generation and boundary conditions.

Figure 2: The computational mesh for the 2D car problem. Coarse mesh (top) and refined mesh (bottom)

Discuss the simulation parameters, including the blockMesh and snappyHexMesh settings you changed to obtain a refined mesh.

Search about **Courant-Friedrich-Lewy (CFL) number** and write here the values we used in the lecture and you used in your computations.

3 Results

Present and discuss the results.

Figure 3: Streamtraces and velocity distribution around the car at t = 2500 s with the refined mesh (top) and coarse mesh (bottom)

Summarize the findings, emphasizing the observation of the effects of mesh refinement on your results.

4 Contribution

Detail the contributions of each group member.

Team member	Contribution
Name Surname	Worked on mesh generation.
Name Surname	Conducted simulations.
Name Surname	Analyzed results.

Table 1: Contributions of group members