Computational Fluid Dynamics

Lecture 1 February 25, 2025

Levent Aydınbakar

Asst. Prof. Dr.

levent.aydinbakar@btu.edu.tr

Bursa Technical University

Department of Mechanical Engineering

About me

Education

- Eskisehir Osmangazi University, Eskisehir, Turkey, BSc in Mechanical Engineering, 2011
- > Cranfield University, Bedfordshire, United Kingdom, MSc in Computational Fluid Dynamics (CFD), 2016
- Waseda University, Tokyo, Japan, PhD in CFD, 2021

YLSY Scholarship Program

- > MEXT (JP), Fulbright (US), other country and university programs
- Courses
 - > CFD
 - Finite Element Method (FEM)
 - > Desing in Mechanical Engineering
 - Fluid Mechanics
 - Computer Programming

- Attendance
- Installation of software
 - Ubuntu 22.04 (zsh)
 - OpenFOAM 2406
 - ParaView 5.13
 - Salome 9.12
 - LaTeX, Tikz, PgfPlots
 - Python, Gnuplot

WhatsApp group

- Scan the QR Code to join the group
- Contact, zoom & office hours
 - e-mail (7/24): levent.aydinbakar@btu.edu.tr
 - Zoom (by e-mail appointment)
 - Anytime appointed
 - Office (by e-mail appointment)
 - Tuesday 10:00-12:00
 - e-mail appointment
 - > Appropriately written e-mail
 - Subject and questions given clearly

 $p,\,\rho,\,g,\,z,\,u,\,A$ are pressure, density, gravity, height, velocity, area

Figure: Flow through a venturi

 $p,\,\rho,\,g,\,z,\,u,\,A$ are pressure, density, gravity, height, velocity, area

> The pressure difference $(\Delta p = p_1 - p_2)$ (with some important assumptions)

- Bernoulli Eq. assumes
 - Laminar and steady flow
 - Inviscid flow
 - Incompressible flow

Figure: Flow through a venturi

 $p,\,\rho,\,g,\,z,\,u,\,A$ are pressure, density, gravity, height, velocity, area

> The pressure difference $(\Delta p = p_1 - p_2)$ (with some important assumptions)

$$\Delta p = \frac{\rho u_1^2}{2} \left(\frac{A_1^2}{A_2^2} - 1 \right)$$

- Bernoulli Eq. assumes
 - Laminar and steady flow
 - Inviscid flow
 - Incompressible flow

More complex problems What if we need pressure distribution?

More complex problems Need finite element discretization

More complex problems Pressure distribution

More complex problems Velocity distribution & streamtraces

More complex problems

The Navier-Stokes Equations

- > For incompressible fluid flow
- Fluid mechanics governing equations
- Momentum conservation
- > Continuity
- Non-linear PDEs

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{u}\mathbf{u}) - \mathbf{f} \right) - \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} = \mathbf{0}$$
$$\boldsymbol{\nabla} \cdot \mathbf{u} = 0$$

where

 $\boldsymbol{\sigma} = -p\mathbf{I} + 2\mu\boldsymbol{\varepsilon}(\mathbf{u})$

and

$$\boldsymbol{\varepsilon}(\mathbf{u}) = \frac{1}{2} \left(\boldsymbol{\nabla} \mathbf{u} + (\boldsymbol{\nabla} \mathbf{u})^{\mathsf{T}} \right)$$

 ρ , u, f, σ , μ , I, p, fluid density, velocity, external force, stress tensor, dynamic viscosity, identity tensor, and pressure

CFD application examples

CFD application examples

Source: https://blog.gridpro.com/meshing-aspects-for-open-water-marine-propeller-cfd

Source: https://mantiumcae.com/cradle-cfd-germany/

Source: www.cfdsupport.co

CM application examples Solid mechanics

Source: www.extremeloading.con

CM application examples Fluid-structure interaction (coupled)

CM application examples Thermo-fluid problems (coupled)

Source: https://www.simscale.com/blog/2014/06/server-room-cooling-hvac-simulation/

> Expectations

- Calculus (integration, differentiation...)
- Differential equations
- Linear algebra (vectors, matrices...)

> Expectations

- Calculus (integration, differentiation...)
- > Differential equations
- Linear algebra (vectors, matrices...)
- Sources
 - soscfd.com , YouTube (leventaydinbakar)

SOSCFD

Solutions for Open Source Computational Fluid Dynamics Hesaplamalı Akışkanlar Dinamiğinde Açık Kaynaklı Çözümler

Osman Turan

Assoc. Prof. Dr.

Merve Küçük Asst. Prof. Dr.

Levent Aydınbakar Asst. Prof. Dr.

İsmail Hoş Res. Asst.

Ramazan Aslan Res. Asst.

Computer Programming Computational Fluid Dynamics Design in Mechanical Engineering

Contact

- > Expectations
 - Calculus (integration, differentiation...)
 - Differential equations
 - Linear algebra (vectors, matrices...)
- Sources
 - soscfd.com , YouTube (leventaydinbakar

Tentative plan

25.02	 Introduction to the course
04.03	2. Introduction to CFD
11.03	3. Introduction to OpenFOAM (Lid-driven cavity)
18.03	CAD generation by Salome (Cyclone)
~ - ~ ~	

25.03 **5.** Post-processing using ParaView (Cyclone)

29.03-04.04 Ramazan Bayrami

- 08.04 6. Meshing strategies (OpenFOAM)
- 15.04 7. Meshing strategies (Salome)
- 22.04 8. Advanced look at OpenFOAM options

29.04	9.	CFD for Automotive Flows
03.05-11.05		Midterm Exams
13.05	10.	CFD for Turbomachinery Flows
20.05	11.	CFD for Thermo-fluid Applications
27.05	12.	CFD for Multiphase Flows
02.06-09.06		Kurban Bayrami
10.06	13.	CFD for Aerospace Applications
17.06	14.	Final Presentations

Midterm Project 20%

- > Team (of 2 people) work
- Only presentation

- Expectations
 - > Calculus (integration, differentiation...)
 - Differential equations

Linear algebra (vectors, matrices...)

Homework 20%

2 homeworks 10+10%

Sources

soscfd.com , YouTube (leventaydinbakar

Final Project 60%

- Individual work
- > You will choose what to work on
 - Final presentation 14th week
 20% (10mins)
 - Final report due by final exam date 40%

Tentative plan

- 25.02 **1**. Introduction to the course
- 04.03 2. Introduction to CFD
- 11.03 **3.** Introduction to OpenFOAM (Lid-driven cavity)
- 18.03 4. CAD generation by Salome (Cyclone)
- 25.03 **5.** Post-processing using ParaView (Cyclone)

29.03-04.04 Ramazan Bayrami

- 08.04 6. Meshing strategies (OpenFOAM)
- 15.04 7. Meshing strategies (Salome)
- 22.04 8. Advanced look at OpenFOAM options

- 29.04
 9. CFD for Automotive Flows
 03.05-11.05
 10. CFD for Turbomachinery Flows
 20.05
 11. CFD for Thermo-fluid Applications
- 27.05 **12**. CFD for Multiphase Flows
- 02.06-09.06 Kurban Bayrami
- 10.06 13. CFD for Aerospace Applications
- 17.06 14. Final Presentations